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ABSTRACT

It was Wiedemann who demonstrated the relevance of adsorption phenomena
in thermo-analytical research. In the present paper a contribution is given to analyse
in how far the commonly used word “adsorption™ covers the adsorption phenomena
encountered in the measurement procedure of thermogravimetry. The practical defini-
tion of adsorption both from volumetric and gravimetric methods is compared with a
definition from a gas kinetical treatment. It is shown that the difference between the
definitions is not always negligible.

INTRODUCTION

Adsorption is a phenomenon which plays a role in most experiments in the
fields of thermogravimetry''? and thermoanalysis. In these fields adsorption is not
always only a disturbing effect, which has to be eliminated by pumping and baking
out procedures, but the adsorpion state can be of essential importance, for instance,
as an intermediate state in solid-gas reactions and in diffusion of gases in solids.
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Fig. 1. The potential energy curve used.



In different approaches of adsorption, it may be easiest to use different defini-
tions for “adsorbed molecule™ and for “number of adsorbed molecules™. It is the
aim of the present paper to compare the different definitions and to analyse the magni-
tude of the errors which can be involved through inappropriate use of the definitions.
The treatment will be set up along the lines of the kinetic theory of gases. The following
simplifications are made: (/) Gas molecules are supposed to collide with the walls
only, so collisions between the gas molecules are neglected. (2) The interaction between
gas molecules and the walls is characterised by a rectangular potential well of width
w and depth U, (sze Fig. 1). (3) Only the movements of the molecules in directions
perpendicular to the walls are considered.

In Fig. 1 four molecules are shown. The molecules A and D will have their
next collision with the real wall at the right-hand side of the figure. Molecule B will
escape from the potential well, but molecule C will be reflected by the potential wall
and then return in the direction of the real wall with unchanged kinetic energy. From
this picture we learn that three kinds of molecules can be distinguished on the basis
of their presence i one of the three regions «, B and 7, as drawn in Fig. 2. As the
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Fig. 2. Molecular regions in the theoretical procedure.

molecules in region « do not have sufficient energy to escape from the potential well,
these molecules are called adsorbed in the kinetic treatment. We will refer to this as
the molecular definition of adsorption.

EXPERIMENTAL

Gravimetric experiments

Here we shall consider the role of adsorption in thermogravimetry. In Fig. 3,
a sample is shown suspended from a balance, the volume of the sample is V,, and
its density p,. ¥, is the volume around the sample in which adsorption occurs, so
Vs corresponds with the z- and the f-region, as shown in Fig. 2, together. When the
mass of the «, § and y molecules in a unit volume is called p,, p, and p,, respectively,
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the force F;, due to gravity on the sample and the gas molecules present in Vg, is
given by

Fy = g{Vips+ Vos(p.+Pp)} 1)

where g is the acceleration due to gravity.
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Fig. 3. Molecular regions in the gravimetric procedure.

The buoyancy force, F,, amounts to

Fy, = g(Vs+ Vap)p, &)
The net force F, acting on the balance is
F, = Fg—F, = g{Vp,— P+ Voy(p.+ps—p))} 3)

where the term gV 4(p,+ pg—p,) represents the experimental effect caused by the
adsorption.

Volumetric experiments

A volumetric set-up is schemaacally shown in Fig. 4. A vessel (volume V)
containing a solid sample (voiume V) is originally evacuated. An amount of gas,
mass M, is let into the - essel. This gas splits up into two regions, nameiy the adsorb-
tion region (volum< V,;) around the sample and the rest of the space with volumeV/,,
satisfying the eyuation

V.=V—V,~Vg C)
Fex the distribution of the mass of the gas the following equation hoids
M = (V—Vi—Vop)p,+ Vs (P2t pp) &)
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which upon rearranging gives

M = (V.—Y)p,+ Vag(pa+p5—p,) ©

In Eqn. (6), the term V 4(p.+ py—p,) refers to the measured amount of adsorbed gas.

Fig. 4. Molecular regions in the volumetric procedure.

DISCUSSION

Qualitative comparison
The number of adsorbed molecules () according to the molecular definition
amounts to

I,:}p x (7)

n, =

1
m
where m stands for the mass of one molecule.

In a similar way, the numbers of molecules, n, and n,, in the g and y regions,
respectively are defined as

i

and

v,p, ®



It follows from Egns. (3) and (6) that in the gravimetric and volumetric experiments,
the number 711, of adsorbed molecules amounts to

I .
n, = 7}—3 Lzﬁ(pz+pﬁ—p7) (10)

We shall refer to Eqn. (10) as the “practical ™ definition of the number of adsorbed
molecules.
Using Eqns. (7), (8) and (9) in Eqn. (10) leads to

V e
n, = n,+n0g— —n, (11)

F

We see from Eqn. (11) that there is a difference between n, and n,, which means that
the * practical ™ and the *“molecular™ definitions are not identical.

Apart from this there is another basic difference: the molecular definition
enables us to say whether or not a molectle is an adsorbed cne. This is not so for the
practical definition, where only the total number of adsorbed molecules is defined,
but where no adsorption criterium for individual molecuies can be given.

Returning to Eqns. (7) and (10), we see that the difference between 17, and »n,
originates from the difference between p, and p_. For the explanation of this, let us
consider two planes both parallel to the wall, the first inside, the second outside, the
adsorption region. The number of  molecules passing through the first plane in
each of the two directions equals the number of y molecules passing the second plane
in the same direction. when stationary state conditions are assumed. In other words,
the “flow densities™ in the § and y regions are equal to one another.

71
B

Fig. 5. lllustration of the difference in velocity caused by the potential erergy jump.

In Fig. 3, it is illustrated that a molecule travelling from the ; to the f§ region
looses potential energy when passing the boundary between the two regions. This
must be accompanied by an increase of the kinetic energy, and therefore of the velocity,
of the molecule. This explaines the fact that, though the *flow densities” in the ff and
region have the same value, the densities are not equal to one another.
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Quantitative comparison

In this section. we shall give a quantitative treaiment of the differ
n, and n.. which has already been qualitatively explained above. The calculations
can be carried out in different wavs. The way chosen in the present paper is one which,
though here applied for a rectangular potential well. can in principle be used for any
other form of potential energy curve *-*. In the calculations, use will be made of the
width, 13", of the vessel, shown in Fig. 2, where it can also be seen that only one end
of the vessel is supposed to take part in the adsorption process, as the opposite wall is
represented by an energy jump of infinite height.

Using the equations

ice between

V., = Air (12
where A stands for the surface area of the sample, and

= AW (13)
equation (11) reads

n, = n,+ng— % n (IH

We shall evaluate this relation by expressing 1, and #.. in terms of n,. We define the
oscillation time t 2s the time interval it «akes a gas molecule which leaves the wall to
return to it, while on its way its total energy remains constant. So for x molecules
(0< E< U, the oscillation time 7,(£) reads

T (E) = (2mE) (135)

To find the oscillation time t; . (E) for the other molecules (E> L)), we have to con-
sider that during a part of this oscillation time, these molecules are § molecules
[during t4(E) sec.] and that during the rest of their oscillation time, they are ; mole-
cules [during 7.(E) sec], so

Ty AE) = tEj+ T (E) = wr Cm;E) + W (2miE—U,) (16)

These oscillation times we can make use of when calculating the density of the
energy levels as a function of energy. The formal approach for the calculation of
this density would be to solve the eigenvalue problem of Schrodinger’s equation, but
using the Heisenberg relation. this can be connected with the classical oscillation
times. When g(E)dE is the number of energy levels between E and £+ dE. the Heisen-
berg relation reads here

wE) =h (17)

O(E)

where /1 is Planck’s constant.



For 0< E< U,. it follows from Eqns. (15) and (17) that
o ,
g(E) = 7 V(@2m/E) (18)
1

For E> U,, it is follows from Eqns. (16) and (17) that

R — | S ——
e(E) = % J2mjE) + —~ JCmiE=Ug) (19)
1 1

Letting n(E)dE be the number of molecules with an energy between Eand E+dE
then, using Boltzmann statistics, it follows that for 0<E< U,

n(E) =C % V(2mJE) e EKT (20)
1

where C is a constant which may be calculated by applying the usual normalising
procedure.
Similarly, for E> U, we find

S 1
n(E) = C!{ % V@MIE) +— (CmE=Ugye™ 21)
1 1

The number of molecules ng (E)dE with energy between E and E+dE, while £> U,
we shall split up into the numbers ng(E)AE and n(E)dE, being the numbers of mole-
cules with energies between E and E+dE, in the § and the 7 region, respectively. For
these numbers we now, incorporating Eqn. (16)

ng(E) _1(E) _ _® \(2mjE) (22)
n(E) t,(E) W Q2m/E—U,)
from Eqgns. (21) and (22) it follows that
ng(Ey = c’T" 2m]E) e EAT (23)
1
g W o 77N a—EaT
n.(E) = CI— NV RmE—Ug)e™ ™ v2))
1
Integration over the energy regions invol- . yields
n, = Cee y/2m [ E *e FATHE (25)
h Jo
ng = M * E Ye EXT 3 (26)
h Jo




n, = iy am i\ e ‘ (E—Ug) te F¥T 4E (27)
1 - Un

For numerical evaluztion of the above integrals we shall rewrite them in terms of
error functions defined as:

e .
erf{f) = — ] e % dy {23)
NI
This leads to
i @ -« T Iora
n, = C-— Q2amkT et {((UkT); (29)
I3
{3 e . T o -
ng = C- R QemkTjil —eri (\(UGkT)}) (30)
1
r ——— _;.
n.=C-—((2zmkT)c Lo kT (30D
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Fig. 6. The quotient of the iwo number of adsorbed molecules as a function of the relative adsorption.
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From the three Egns. (29), (30) and (31), one can solve three unkrown quantities.
Taking for these quantities n7g, C and 7, one can express these in terms of #, and #..
Using these solutions in Eqn. (14). gives a relation between n_, 7. and n,,. This relation
can be rearranged as one between n,:n, and (n,W)/(n.1c). The latter relation is repre-
sented in Fig. 6.

We see that for (n, 1) (n1)>10. the difference between », and n_ is less than
7%. From the scale on the top of Fig. 6, we see that this is the case for U, (AT)>2.3.
For a typical chemisorption this latter inequality is valid in practically all experiments.
For physical adsorption this inequality is onlv invalid in very high-temperature
experiments. For the study of baking out procedures the effect should well be accoun-
ted for.
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